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Abstract. We argue that in order to describe dilute dipolar or RKKY spin-glasses, a broad 
distribution of couplings (i.e. decaying as a power law) is more appropriate than the 
traditional Gaussian distribution. We present a mean-field 'replica symmetric' theory for 
this problem. We find that the spin-glass transition is of a different nature than the one 
occumng in the snmodel, and resembles a percolation transition. The de Almeida-Thouless 
temperature is lower than the spin-glass transition temperature. The degree of 'replica 
symmetry breaking', measured by the absolute value of the negative entropy, is found to 
be smaller than in the SK model and non-monofonic with femperafure. Some experimental 
consequences are briet7y addressed. 

Despite many years of effort, the correct theoretical picture of finite-dimensional 
spin-glasses is still lacking [1,2]. From the celebrated Parisi solution of the (mean 
field) Sherrington-Kirkpatrick model, one induces that a spin-glass is characterized 
by a large numtYer of nearly degenerate ground states, separated by inEnite barriers 
and organized in a hierarchical manner in phase space. From this large degeneracy 
follows the existence of a transition (de Almeida-Thouless) line in the temperature- 
magnetic field plane [3], below which ergodicity is broken and anomalous dynamics 
is expected: in many respects, the system remains 'critical' in the whole spin-glass 
phase [4-61. 

A rather different (although possibly complementary) point of view is expressed 
by Fisher and Huse [7,8]: a finite dimensional spin-glass would possess a unique 
ground state (up to a global spin-flip) above which excitations organize as droplets of 
reversed spin. The energy of a droplet grows with its linear size as uLe with 0=0.2 
in d = 3 [8]. U depends on the disorder and its probability density is expected to be 
finite around U = 0 [7]. 

Although many qualitative predictions are not so different in the two approaches 
(although dynamical 'T-jump' experiments may be able to distinguish between the two 
[9, lo]), the droplet model leads to two rather important conclusions [7,8]: Erst, the 
overlap distribution function should reduce, for large sizes, to a delta function (since 
there is only one state, but see also.[7]), m d  no de Almeida-Thouless (AT) line should 
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exist (the broken symmetry at the spin-glass transition would be a disguised king 
symmetry, rather than the 'replica symmetry'). Recent numerical simulations, however, 
suggest that some features of the droplet picture should probably be revised [I]-131 
(but see [14]). I / d  expansion 'around' the SK model show furthermore that the 
distinctive features of Parisi's solution are enhanced, rather than suppressed, when the 
dimension is lowered 1151. 

In order to bring a little more to the understanding of the physics of 'real' 
spin-glasses, we have generalized the SK model to the case of a 'broad' distribution of 
the couplings J8, i.e. the case where the variance of J is infinite. Apart from the interest 
of exhibiting a new family of solvable spin-glasses, the physical motivations are the 
following: 

If one throws at random in space spins which interact through RKKY or dipolar 
interactions, the resulting distribution of coupling P(J) decays, for large J, as J-*. 
This tail corresponds to nearby spins interacting as g / r 3 ,  and is, of course, eventually 
cut-off by the hard-core interaction or the Fermi wavelength. This however means that 
there are two important energy scales: the typical interaction strength gp, which is set 
by the density of spins p, and its root mean square (J2 ) ' / ' -g /a3 ,  which is dominated 
by the cut-off distance e For sufficiently small concentrations of spins (pa3<< I), the 
fraction of spins at close contact is negligible, and the range over which the interaction 
varies is large: it is therefore a very bad approximation to portray 9 ( J )  as a Gaussian. 
We shall thus consider, more generally, distributions decaying as P(J) -J-('+*) (cor- 
responding to J ( r )  = r - d / * ) ,  with p S 2 ,  for which the RMS is formally infinite (p=  1 
corresponding to dipolar/RKKY interactions, see also [16,17]). Couplings drawn from 
such distributions are well separated in scale: for example, the ratio of the largest to 
the next largest tends [as the number of couplings goes to infinity] to 2"* which 
becomes very large as p+O. Intuitively, one might expect that frustration, which is at 
the heart of the spin-glass folklore, is diminished as p decreases: strong bonds are 
satisfied first, leaving only much weaker bonds unsatisfied. One should thus expect 
that 'replica symmetry breaking' effects should somehow be reduced, or even possibly 
disappear, as p decreases from its Gaussian limit p = 2". In other words, this work 
intends to discuss the generality of replica symmetry breaking. 

Our motivation was also spurred by surprising experimental results on dilute dipolar 
spin-glasses [ 181, which showed a very clear tendency for the relaxation time spectrum 
to narrow as the temperature is decreased; as we'shall argue later, this might be related 
to some novel behaviour which arises in our model. This anomalous behaviour disap- 
pears for higher spin concentrations, where the Gaussian model becomes reasonable. 

We consider N king spins on a fully coMected lattice, with a Hamiltonian 
given by 

where the J, are distributed according to a symmetric distribution P(J), decaying for 
large IJI as J~/l/l'"*'. As the sum of N such variables scale as N'/' (see e.g. [19]), 
we have rescaled the couplings in (1) so that the energy per spin is of order 1. We 
study the problem through the 'cavity method' (we have not been able to make progress 
with the replica method), which amounts to write self-consistent equations when an 
( N +  I)th spin So is added to the system. The basic hypothesis is that the probability 
P ( { S } )  to observe IS,, S,, . . . , SN} is factorized-this assumes that the system can be 
prepared in a single 'pure' phase (in the case of the pure ferromagnet, one may show 
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that this assumption fails only right at the transition point): 

P ( { S } ) =  fi [ eh‘s’ ] 
j= l  2 cosh(A,) 

where miA= tan:(&) is the magnetization of spin i in the N spin system. From (2) and 
k = X E l  JoiSj ( J G J / N ” ~ ) ,  one may obtain the probability distribution of k, p(k). 
Finally, assuming that the addition of the (N+l) th  spin only weakly perturbs the 
{ m i } ,  one may calculate the free energy and the magnetization of the extra spin. One 
finds: 

Z = x  dkp(h)ePhS~=2e’ cosh(@) (3) 
SO J 

and 

mo=Z-’  dkp(h)SoePhso=tanh(@) 
S. I 

with 

(4) 

N 

i=,  
@ =  1 tanK1(mi tanh(p&)) (5 )  

and 
N 

, = I  
‘p = 1 log( 1 + (1 - mi)  sinh2(/3jOi)) 

and p=l/T. 
Assuming that pf0 ,  is always small, one finds the familiar equation mo= 

tanh(Xfi, pJo,m,) which holds in the SK model [l]. Naively, one could think that this 
is always justified due to the N-’’* rescaling factor. Of course, this is not true in our 
case, since the largest (and most important) J is precisely of order N”’. It is however 
easy to see that the usual central limit theorem may be applied to the sum defining @, 
which thus has a Gaussian distribution Gpz4(@) of variance=p2q. The self consistent 
equation giving q (which generalizes the Edwards-Anderson order parameter) then 
reads: 

+m 

4 =I-, d@ G,A@)Q,(tanh(@)) (7) 

with 

The free energy can be obtained using equation (3) (see [1,20] for details). In order 
to check the validity of this calculation (which is similar to the ‘replica symmetric’ 
approach to the SK model), one now adds two spins and compute their correlations, 
which must remain of order l/m. This leads to a condition which generalizes the 
de Almeida-Thouless line to our case [l, 201. 

One should finally mention that a mean-field calculation for r-3 interacting spins 
was presented in [ 16,211. The authors use a somewhat different language, but their 
results amount to the above mentioned expansion in pjOi.  This leads to an infinite’ 
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transition temperature (i.e. governed by the short-scale cut-off), and not, as we shall 
show below, to a transition at a finite T = Jo (= gp in the physical case referred to above). 

We now consider the results. 
(a )  Transition temperature. From equation (7), one finds that there exists a finite 

transition temperature Tc=’Jo(~~2dc/lc11+’ tanh2(&))’’” for all O<p<2, below which 
q takes non-zero values, signalling the appearance of frozen spins. One finds q( T ) a  
T,- T for T close to T, and q( T )  = q(0) -aT3-’ at low temperature. The ‘spin-glass’ 
transition is however of a different nature than the one found in the SK model. In the 
SK model, the transition is associated with a coNectiue freezing of all the spins, whereas 
in our case, the transition is akin to a percolation transition: at T, an infinite cluster 
of strongly correlated spins start to freeze, while many finite clusters of spins remain 
in their high temperature state. As temperature is decreased, these finite clusters 
progressively merge with the infinite cluster (this scenario was in fact proposed in early 
spin-glass theories 1221). A way to understand this is to estimate the probability that 
a given coupling exceeds, say, 2 T  one finds 

Note that these ‘strong bonds’ are not only larger than T but also larger than the sum 
of all other couplings emerging from the site. One can show (see e.g. [23]) that these 
‘strong bonds’ percolate when there is on average one strong bond per site, i.e. for a 
temperature such that: N(2’- ’ /pN)(J0/  T)’ = 1 which is indeed of the same order of 
magnitude as T,. A very important qualitative conclusion is that there should exist a 
certain fractionfof ‘fast spins’ corresponding to finite clusters still in the paramagnetic 
state, in the spin-glass phase, where, in analogy with percolation, 1 -f=(T,- T ) p  
( p  =0.5 for 3~ percolation). These ‘fast spins’ are indeed very clearly seen in magnetiz- 
ation relaxation experiments [24]: after the field is cnt, there is always a very fast 
initial drop of the magnetization which could be attributed to these ‘fast spins’. The 
relative amplitude of the drop is furthermore found to be roughly compatible with the 
percolation estimate [24]. 

(b) Entropy and de Almeida-?louless instability. A plot of the calculated entropy 
as a function of reduced temperature TIT, is given in figure 1 for different values of 
p. As in the SK model, the entropy is seen to become negative below a certain 

0 0.5 1 

Figure 1. Entropy of the replica symmetric solution 
in the low-temperature phase. versus reduced tem- 
perature TITc, for different v&es of p. Note that 
S ( T )  reaches a minimum for 72 0, and vanishes for 
7 = 0. Note that the AT temperatureis, in these units, 

TKc around 0.8-0.85 for all p. 
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temperature P. Quite surprisingly, however, the entropy reaches a minimum and then 
increases again to reach zero for T = 0: replica symmetry breaking, at variance with 
the SK model, seems to be maximum at a non-zero temperature. One should also notice 
that the minimum value of the entropy is significantly lower than in the SK model (for 
example, S,,,,=-O.OI, -0.08, -0.17 for p=O.7, 1.5 and SK). 

Near T,, one can show analytically that the replica symmetric solution is stable. 
For p =  1.5, for example, Tc=2.8, while the AT instability occurs at TAT=2.4. (The 
ratio TAT/Tc is found to depend very weakly on p.) Hence we find two different 
transition temperatures, first towards a ‘simple’ spin-glass phase where freezing of the 
spins occur, followed (as temperature is decreased) by a ‘multi-phase’ spin-glass (i.e. 
replica symmetry broken). This may be qualitatively understood using the percolation 
picture: just below T,, the infinite ‘cluster’ contains very few ‘loops’ which are respon- 
sible for frustration. As the temperature is lowered, the clusters-which can be thought 
of as ‘superspins’-start to interact strongly, and the freezing of the orientation of 
these superspins leads to frustration and to the AT instability. Experimentally, this 
raises the intriguing possibility that some freezing might occur before any irreversibility 
line i s  crossed. 

(c) TM equations and structure of the ground state. From the cavity equations, one 
may obtain TAP-like equations which relate the average magnetization on a given site 
to the average field acting on that site. One finds: 

where mN+‘ refers to a thermal average in the N + l  system and Y ( T ) =  
@ ( T ) - P ( a @ ( T ) / J p ) .  It is easy to check (using (6)) that equation (8) reduces to the 
usual TAP equation when pJoi <c 1. At this stage, and for the following discussion, two 
cases must be distinguished: 

(i) 1 <p<Z: In this case, the average of IJI is finite, as well as the average free 
energy per spin. However, the additional term in equation (8) does not vanish for 
T = 0 (as it should to reproduce the correct equation for the T = 0 metastable states, 
mr+’=sgn[XEl Jo,m(Yt’]). This is because, as in t h e m o d e l ,  the local field density 
p ( @ )  is non-zero around @ = 0, which leads to 1 - m2 oc r-o T for our one-phase 
solution. A more detailed analysis of equation (8), or a generalization of an argument 
due to Anderson [25], suggests that true ground states should be such that p ( @ )  =a+o @ c  
with l a p - 1 ,  while numerical simulations [ZO] suggest that c = p - 1 .  Hence the 
one-phase solution cannot be the correct solution for T = 0, even if its entropy is zero. 
From the above result on p ( @ ) ,  we predict that S ( T )  

Finally, we have calculated numerically the number X of 7 = 0  metastable states 
and their energy distribution. We found that log K= yN (for N up to 25), with, 
surprisingly, y-0.15 independently of p (we recall that y=O.Z in the SK model). 
However the energy distribution is very broad (contrary to the SK case), indicating 
that usual algorithms to find the ground state energy [4] become quickly inefficient as 
N increases. For p = 1.5, we have found a ground state energy of = -2.855, for N = 100 
and = -2.7J0 for N = 400, while the above one-phase calculation yields -2.965,, which 
is presumably (see below) an upper bound for the ground state energy. 

(ii) p < 1: in this case, the average energy per spin is infinite. Since one may expect 
that all the strong bonds are satisfied, one should have, to leading order in N, 
E = X i < ,  IJgI = UN’’*, where U is distributed according to an asymmetrical Levy distri- 
bution of index p [19]: this is precisely what is obtained using equations (3), (6). On 

T’. 
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the other hand, this contribution to the free energy is independent of temperature and 
all the interesting effects are related to inter-cluster bonds which are, say, such that 
[ I (  < 1, contributing to the free energy to order N. The question is thus if the remaining 
'cluster-glass' retains some of the complexity of the SK spin-glass, or if the reduction 
of degrees of freedom is su6icient to allow a one-phase description. As was mentioned 
above, the result on the entropy and on the AT line shows that many phases are needed 
below a certain temperature. Analysis of the TAP equation however suggests that it 
might not be the case at zero temperature. Indeed, equation (8 )  reads, for p <  1 and 
T=O,  m y + ' =  m:*' sgn(Joi) if IJoil>l$il and m~+'=sgn[Xl+,~,iJ,,,l JOjm"+'+ 
Z16,1clJo,l ~ g n ( J ~ ~ ) $ ~ ] ,  where is the field acting on site i before the (N+ 1)th spin is 
added. The first equation ensures that the strongest bonds are satisfied, while the 
second sets (apparently correctly) the clusters' relative orientations. (The term in 
brackets can be seen as the effective field acting on the cluster containing site 0.) It 
may thus well be that 'replica symmetry' is restored at zero temperature. 

In conclusion it appears that 'replica symmetry breaking' is needed for all 0 < p < 2, 
at least for O <  T <  'FAT< T,. Assuming an ultrametric distribution of states, one may 
write, following [ 11, the self-consistent equations for the generalized order parameter 
function q ( x )  and the free-energy. (x is, as usual 111, a parameter between 0 and 1 
indexing the level in the ultrametric tree.) We are currently working to solve these 
equations numerically, and will report on the results in a longer publication 1201. 
Preliminary analysis at T=O reveals that: 

(a) the ground state energy c& only decreuse when one allows for many states, 
at least at the 'one-step' level. This is at variance with the SK model, where the ground 
state energy increases when the replica symmetry is broken. Note however that no 
variational principle is available in our case to determine the location of the 'break 
point' x 

(b) the minimum overlap between two states is non-zero for T=O: this is also at 
variance with the SK model (1) and is again clearly related to the fact that the strong 
bonds impose a common 'skeleton' to all ground states. 

An important outcome of the many-phase computation is the evolution of the phase 
space structure with temperature. The position of the breakpoint x(  T) (defined e.g. 
as the point where dq/dx is maximum) is of crucial importance for the dynamics: the 
characteristic width of the distribution of energy barriers is given by AE = T/x(T) 
[l, 261. In both the SK and the REM model [1,27], x ( T )  is proportional to T at low 
temperatures, that is AE + constant. A decreasing x( T) is needed to explain the 
anomalous dynamics found in [ 181 (see in particular figure 4 of [ 181, where x is called 
y [26]). The non-monotonic behaviour found above for the entropy could signal such 
an unexpected shape of x( T) .  Further work is needed to answer this question. 

In summary, we have presented the 'one-phase' (replica symmetric) solution of a 
spin-glass model with strongly fluctuating bonds, which we think is more appropriate 
to describe real spin-glasses than the usual Gaussian (SK) model. We have found that 
the spin-glass transition resembles a percolation transition, with a fraction of 'fast' . 
spins decaying from 1 as the temperature is lowered. A second transition occurs for 
a lower temperature, towards a 'many-phase' spin-glass, presumably characterized by 
slow dynamics and aging. The degree of 'replica symmetry breaking', measured by the 
absolute value of the (negative) entropy, is found to be smaller than in the SK model, 
and non-monotonic with temperature (vanishing for T = 0). The ultrametric 'many- 
phase' solution will be described in a future publication. 
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